How do you evaluate the definite integral #int (sint+cost)dt# from #[0,pi/4]#?

1 Answer
Nov 6, 2016

#int_0^(pi/4)(sint+cost)dt=1#

Explanation:

We have to know that:

  • #int(f(x)+g(x))dx=intf(x)dx+intg(x)dx#
  • #intsintdt=-cost+C#
  • #intcostdt=sint+C#

Combining these and keeping the bounds of the integral, we see that:

#int_0^(pi/4)(sint+cost)dt=[-cost+sint]_0^(pi/4)#

Evaluating at #t=pi/4# then subtracting the function evaluated at #t=0#:

#=[-cos(pi/4)+sin(pi/4)]-[-cos0+sin0]#

#=(-sqrt2/2+sqrt2/2)-(-1+0)#

#=0+1#

#=1#