How do you evaluate the definite integral #int (sinx+cosx)^2dx# from #[pi/6,pi/4]#?
1 Answer
Explanation:
Expand:
#=int_(pi/6)^(pi/4)(sin^2x + cos^2x + 2sinxcosx)dx#
Apply the identity
#=int_(pi/6)^(pi/4) (1 + 2sinxcosx)dx#
Apply the identity
#=int_(pi/6)^(pi/4) (1 + sin2x)dx#
Let
#=int_(pi/6)^(pi/4) (1 + sinu) * 1/2du#
Use the property
#=1/2int_(pi/6)^(pi/4) (1 + sinu)du#
Make sure you know your basic integrals of trig functions (e.g. sine and cosine). Also, it would be good to commit to memory the formula
#=1/2[u - cosu]_(pi/6)^(pi/4)#
Since
#=1/2[2x - cos(2x)]_(pi/6)^(pi/4)#
Evaluate using
#=1/2[2(pi/4) - cos(2(pi/4))] - 1/2[2(pi/6) - cos(2(pi/6))]#
#=1/2[pi/2 - 0] - 1/2[pi/3 - 1/2]#
#=pi/4 - pi/6 + 1/4#
#= (pi + 3)/12#
#~~0.51#
Hopefully this helps!