How do you evaluate the definite integral int tanttant from [0,pi/4][0,π4]?

1 Answer
Oct 16, 2016

= 1/2ln 2 =12ln2

Explanation:

int_0^(pi/4) tant \ dt

= int_0^(pi/4) (sin t)/( cos t) \ dt

spotting the pattern
= int_0^(pi/4) (-(d/dt)(cos t))/( cos t ) \ dt

and the other pattern
= - int_0^(pi/4) (d/dt) ln ( cos t )\ dt

reversing the integration interval because of the -ve sign

= [ ln ( cos t ) ]_(pi/4)^0

= ln ( 1) - ln (1/sqrt 2)

= 1/2ln 2