How do you evaluate the definite integral int x/(x+1)xx+1 from [0,1][0,1]?

3 Answers
Nov 16, 2016

I found: 1-ln(2)1ln(2)

Explanation:

We can solve first the indefinite integral by manipulating a bit the integrand:
int(x/(x+1))dx=-int(1/(x+1)-1)dx=-[int1/(x+1)dx-intdx]=-[ln(x+1)-x](xx+1)dx=(1x+11)dx=[1x+1dxdx]=[ln(x+1)x]
evaluated between x=0x=0 and x=1x=1:

=-[ln(2)-1-ln(1)+0]=1-ln(2)=[ln(2)1ln(1)+0]=1ln(2)

We have that

int (x+1-1)/(x+1)*dx=int (1-1/(x+1))dx=x-ln(x+1)+cx+11x+1dx=(11x+1)dx=xln(x+1)+c

Hence

int_0^1 x/(x+1)dx=[x-ln(x+1)]_0^1=1-ln2=0.3068510xx+1dx=[xln(x+1)]10=1ln2=0.30685

Nov 16, 2016

The answer is =(1-ln2)=(1ln2)

Explanation:

We do this by substitution, u=x+1u=x+1

Then du=dxdu=dx

So, int(xdx)/(x+1)=int((u-1)du)/uxdxx+1=(u1)duu

=int(1-1/u)du=u-lnu +C=(11u)du=ulnu+C

=(x+1)-ln(x+1)+C=(x+1)ln(x+1)+C

Therefore,

int_0^1(xdx)/(x+1)=[(x+1)-ln(x+1)] _0^110xdxx+1=[(x+1)ln(x+1)]10

=2-ln2-1-0=(1-ln2)=2ln210=(1ln2)