How do you evaluate the definite integral #int x/(x+1)# from #[0,1]#?

3 Answers
Nov 16, 2016

I found: #1-ln(2)#

Explanation:

We can solve first the indefinite integral by manipulating a bit the integrand:
#int(x/(x+1))dx=-int(1/(x+1)-1)dx=-[int1/(x+1)dx-intdx]=-[ln(x+1)-x]#
evaluated between #x=0# and #x=1#:

#=-[ln(2)-1-ln(1)+0]=1-ln(2)#

We have that

#int (x+1-1)/(x+1)*dx=int (1-1/(x+1))dx=x-ln(x+1)+c#

Hence

#int_0^1 x/(x+1)dx=[x-ln(x+1)]_0^1=1-ln2=0.30685#

Nov 16, 2016

The answer is #=(1-ln2)#

Explanation:

We do this by substitution, #u=x+1#

Then #du=dx#

So, #int(xdx)/(x+1)=int((u-1)du)/u#

#=int(1-1/u)du=u-lnu +C#

#=(x+1)-ln(x+1)+C#

Therefore,

#int_0^1(xdx)/(x+1)=[(x+1)-ln(x+1)] _0^1#

#=2-ln2-1-0=(1-ln2)#