How do you evaluate the indefinite integral #int (-3x^2-x+6)dx#?

1 Answer
Feb 16, 2017

I got:#-x^3-x^2/2+6x+c#

Explanation:

First I would break it into smaller integrals:
#int(-3x^2)dx-intxdx+int6dx=#
and take the constant ot of the integral sign:
#=-3int(x^2)dx-intxdx+6intx^0dx=#
[where in the last one I used the fact that #x^0=1#]

then use the fundamental expression for the integral of a power:

#color(red)(intx^ndx=(x^(n+1))/(n+1)+c)#

and solve it as:

#=-cancel(3)x^3/cancel(3)-x^2/2+6x+c#