How do you evaluate the indefinite integral int (6x^7)dx(6x7)dx?

2 Answers
May 18, 2018

int(6x^7)dx = (3x^8)/4 + C(6x7)dx=3x84+C

Explanation:

For this indefinite integral we can apply the power rule.

The power rule states: intx^ndx = (x^(n+1))/(n+1) + Cxndx=xn+1n+1+C

So, when we plug in our values we get: int(6x^7)dx = (6x^(7+1))/(7+1)(6x7)dx=6x7+17+1

= (6x^8)/(8) =6x88

= (3x^8)/4=3x84

= (3x^8)/4 + C=3x84+C

May 18, 2018

3/4x^8+c34x8+c

Explanation:

"integrate using the "color(blue)"power rule"integrate using the power rule

•color(white)(x)int(ax^n)=a/(n+1)x^(n+1)color(white)(x);n!=-1x(axn)=an+1xn+1x;n1

rArrint(6x^7)dx(6x7)dx

=6/8x^((7+1))+c=3/4x^8+c=68x(7+1)+c=34x8+c

"where c is the constant of integration"where c is the constant of integration