How do you evaluate the indefinite integral int (x^2-2x+4)dx?

1 Answer
May 1, 2017

"A"(x)=1/3x^3-x^2+4x+"c"

Explanation:

intx^2-2x+4 dx

In order to evaluate this integral, apply the reverse power rule to each term separately.

Reverse power rule:

intx^n dx=1/(n+1)x^(n+1)+ "constant"

intx^2-2x+4 dx=1/3x^3-2/2x^2+4/1x+"c"
=1/3x^3-x^2+4x+"c"