How do you evaluate the integral int 1/(1-sinx)dx from 0 to pi/2?

2 Answers
Jul 4, 2018

The integral is divergent.

Explanation:

This is an inproper integral.

Calculate the indefinite integral first by substitution

Let u=tan(x/2)

=>, du=1/2sec^2(x/2)dx=1/2(1+u^2)dx

And

sinx=(2u)/(1+u^2)

Therefore, the integral is

I=int(dx)/(1-sinx)

=int(2/(1+u^2))*1/(1-(2u)/(1+u^2))*du

=int(2du)/(1+u^2-2u)

=int(2du)/(u-1)^2

=-2/(u-1)

=-2/(tan(x/2)-1)+C

The definite integral is

int_0^(y)(dx)/(1-sinx)=[-2/(tan(x/2)-1)]_0^(y)

=(-2/(tan(y/2)-1))-(-2/(0-1))

=-2-2/(tan(y/2)-1)

And the improper integral

lim_(y->pi/2)(-2-2/(tan(y/2)-1))=-oo

The integral is divergent.

Jul 4, 2018

int 1/(1-sin x) dx =(tan x + sec x)+ C
int _0^(pi/2) 1/(1-sin x) dx =oo

Explanation:

int 1/(1-sin x) dx =int (1+sin x)/ (1- sin ^2 x) dx

int (1+sin x)/cos ^2 x dx = int (sec^2x +tan x sec x) dx

= (tan x + sec x)+ C

int _0^(pi/2) 1/(1-sin x) dx = [ tan x + sec x]_0^(pi/2)

(oo+oo)-(0+1)= (oo-1) = oo [Ans]