How do you evaluate the integral int 1/(x^2+16)dx1x2+16dx from -oo to oo?

2 Answers
Mar 18, 2017

The answer is =pi/4=π4

Explanation:

We need

1+tan^2theta=sec^2theta1+tan2θ=sec2θ

(tantheta)'=sec^2theta

We apply the substitution

x=4tantheta

dx=4sec^2theta d theta

Therefore,

We compute the indefinite integral first

intdx/(x^2+16)

=int(4sec^2theta d theta)/(16tan^2theta+16)

=int4/16d theta

=1/4theta

=1/4arctan(x/4) +C

Now,

we compute the boundaries

int_(-oo)^(+oo)dx/(x^2+16)=[1/4arctan (x/4)]_-oo^(+oo)

=1/4(lim_(x->+oo)arctan(x/4)-lim_(x->-oo)arctan(x/4))

lim_(x->+oo)(1/4arctan(x/4))=1/4lim_(x->+oo)(arctan(x/4))

=1/4*pi/2=pi/8

lim_(x->-oo)(1/4arctan(x/4))=1/4lim_(x->-oo)(arctan(x/4))

=-1/4*pi/2=-pi/8

Therefore,

int_(-oo)^(+oo)dx/(x^2+16)=pi/8-(-pi/8)=pi/4

Mar 18, 2017

pi/4

Explanation:

1/(x^2+16)=i/8(1/(x+i4)-1/(x-i4)) so

int (dx)/(x^2+16) = i/8 int(1/(x+i4)-1/(x-i4))dx

=i/8(log(4i+x)-log(4i-x))=log((4i+x)/(4i-x))^(i/8)

but 4ipm x = sqrt(16+x^2)e^(pm i phi) where phi= arctan(4/x) so

log((4i+x)/(4i-x))^(i/8)=log((e^(2iphi))^(i/8))=log(e^(-phi/4))=-phi/4

now

int_0^oo (dx)/(x^2+16)=lim_(x->oo)(-phi/4)-lim_(x->0)(-phi/4) = 0-1/4(-pi/2)=pi/8

so

int_oo^oo (dx)/(x^2+16)=pi/4