We need
#1+tan^2theta=sec^2theta#
#(tantheta)'=sec^2theta#
We apply the substitution
#x=4tantheta#
#dx=4sec^2theta d theta#
Therefore,
We compute the indefinite integral first
#intdx/(x^2+16)#
#=int(4sec^2theta d theta)/(16tan^2theta+16)#
#=int4/16d theta#
#=1/4theta#
#=1/4arctan(x/4) +C#
Now,
we compute the boundaries
#int_(-oo)^(+oo)dx/(x^2+16)=[1/4arctan (x/4)]_-oo^(+oo)#
#=1/4(lim_(x->+oo)arctan(x/4)-lim_(x->-oo)arctan(x/4))#
#lim_(x->+oo)(1/4arctan(x/4))=1/4lim_(x->+oo)(arctan(x/4))#
#=1/4*pi/2=pi/8#
#lim_(x->-oo)(1/4arctan(x/4))=1/4lim_(x->-oo)(arctan(x/4))#
#=-1/4*pi/2=-pi/8#
Therefore,
#int_(-oo)^(+oo)dx/(x^2+16)=pi/8-(-pi/8)=pi/4#