We need
1+tan^2theta=sec^2theta1+tan2θ=sec2θ
(tantheta)'=sec^2theta
We apply the substitution
x=4tantheta
dx=4sec^2theta d theta
Therefore,
We compute the indefinite integral first
intdx/(x^2+16)
=int(4sec^2theta d theta)/(16tan^2theta+16)
=int4/16d theta
=1/4theta
=1/4arctan(x/4) +C
Now,
we compute the boundaries
int_(-oo)^(+oo)dx/(x^2+16)=[1/4arctan (x/4)]_-oo^(+oo)
=1/4(lim_(x->+oo)arctan(x/4)-lim_(x->-oo)arctan(x/4))
lim_(x->+oo)(1/4arctan(x/4))=1/4lim_(x->+oo)(arctan(x/4))
=1/4*pi/2=pi/8
lim_(x->-oo)(1/4arctan(x/4))=1/4lim_(x->-oo)(arctan(x/4))
=-1/4*pi/2=-pi/8
Therefore,
int_(-oo)^(+oo)dx/(x^2+16)=pi/8-(-pi/8)=pi/4