How do you evaluate the integral int 1/x^2 dx from 1 to oo?
1 Answer
Aug 1, 2016
Explanation:
We have:
int_1^oo1/x^2dx=int_1^oox^-2dx=lim_(trarroo)int_1^tx^-2dx
Using the typical integration rule:
=lim_(trarroo)[-1/x]_1^t
=lim_(trarroo)(-1/t-(-1/1))
=lim_(trarroo)(1-1/t)
Note that as
=1-0
=1