How do you evaluate the integral int 1/x^2 dx from 1 to oo?

1 Answer
Aug 1, 2016

int_1^oo 1/x^2dx=1

Explanation:

We have:

int_1^oo1/x^2dx=int_1^oox^-2dx=lim_(trarroo)int_1^tx^-2dx

Using the typical integration rule:

=lim_(trarroo)[-1/x]_1^t

=lim_(trarroo)(-1/t-(-1/1))

=lim_(trarroo)(1-1/t)

Note that as x approaches oo, 1/t goes to 0.

=1-0

=1