How do you evaluate the integral int 1/xcos(lnx)dx?

2 Answers
Feb 14, 2017

int 1/x cos(lnx)dx = sin(lnx)+C

Explanation:

Substitute:

t=lnx
dt =dx/x

so that:

int 1/x cos(lnx)dx = int cost dt =sint +C

Undo the substitution and we have:

int 1/x cos(lnx)dx = sin(lnx)+C

Feb 14, 2017

The integral equals sin(lnx) + C

Explanation:

This is a substitution problem. Note that d/dxlnx = 1/x, so if we let u = lnx, then du = 1/xdx and dx = xdu.

=>int 1/xcos(u) * xdu

=> int cosu du

=>sinu + C

=>sin(lnx) + C

Hopefully this helps!