How do you evaluate the integral int cos(lnx)dx?

1 Answer
Mar 7, 2017

= (x ( cos(ln x) + sin (ln x)) )/2 + C

Explanation:

int cos(ln x) dx

Consider instead:

int cos(ln x ) + i sin(ln x ) dx

Chosen because we can use of Euler's Formula

= int e^(i ln x ) dx

= int e^( ln x^i ) dx

= int x^i dx

= x^(i + 1)/(i + 1) + C

And the we reverse back into the original form:

= e^( (ln x^(i+1)) )/(i+1) + C

= e^((i + 1) (ln x ) )/(i+1) + C

= (e^(i ln(x)) e^(ln(x)) )/(i+1) + C

= (( cos(ln x ) + i sin(ln x )) x )/(i+1) + C

Use the conjugate of the denominator:

= ((1-i)( cos(ln x) + i sin(ln x )) x )/((i+1)(- i + 1)) + C

= (( cos(ln x) + i sin(ln x ) - i cos (ln x) + sin (ln x)) x )/2 + C

= (x ( cos(ln x) + sin (ln x)) )/2 + (i x( sin(ln x) - cos(ln x ) ))/2 + C

We started with a real integrand so we take the first term and the constant:

implies int cos(ln x) dx = (x ( cos(ln x) + sin (ln x)) )/2 + C