How do you evaluate the integral int dx/(x^4+x^2)?

1 Answer
Jan 4, 2017

The answer is =-1/x-arctanx+C

Explanation:

We need

intx^ndx=x^(n+1)/(n+1)+C(n!=-1)

We factorise the denominator

x^4+x^2=x^2(x^2+1)

Now we can do the decomposition into partial fractions

1/(x^4+x^2)=A/x^2+B/x+(Cx+D)/(x^2+1)

=(A(x^2+1)+Bx(x^2+1)+(Cx+D)(x^2))/(x^2(x^2+1))

Therefore,

1=A(x^2+1)+Bx(x^2+1)+(Cx+D)(x^2)

Let, x=0,=>,1=A

Coefficients of x^2, =>, 0=A+D, =>, D=-1

Coefficients of x, =>, 0=B

Coeficients of x^3, =>, 0=B+C, =>, C=0

So,

1/(x^4+x^2)=1/x^2+0/x+(0x-1)/(x^2+1)

=1/x^2-1/(x^2+1)

Therefore,

intdx/(x^4+x^2)=intdx/x^2-intdx/(x^2+1)

The first integral is intdx/x^2=-1/x

The second integral is intdx/(x^2+1)

We use a trigonometric substitution

Let x=tanu, =>, du=sec^2udu

and x^2+1=tan^2u+1=sec^2u

So,

intdx/(x^2+1)=int(sec^2udu)/sec^2u=intdu=u

=arctanx

Putting it alltogether,

intdx/(x^4+x^2)=-1/x-arctanx+C