How do you evaluate the integral int e^(-2x)dx from 0 to oo?

1 Answer
Oct 21, 2016

int_0^ooe^(-2x)dx=1/2

Explanation:

First without the bounds:

I=inte^(-2x)dx

With u=-2x and du=-2dx:

I=-1/2inte^(-2x)(-2dx)=-1/2inte^udu=-1/2e^u+C

Thus:

I=-1/2e^(-2x)+C=-1/(2e^(2x))+C

Applying the bounds:

J=int_0^ooe^(-2x)dx=[-1/(2e^(2x))]_0^oo

Evaluating and taking the limit at infinity:

J=[lim_(xrarroo)(-1/(2e^(2x)))]-(-1/(2e^0))

The limit goes to 0:

J=0+1/2=1/2