How do you evaluate the integral int e^(-2x)dx from 0 to oo?
1 Answer
Oct 21, 2016
Explanation:
First without the bounds:
I=inte^(-2x)dx
With
I=-1/2inte^(-2x)(-2dx)=-1/2inte^udu=-1/2e^u+C
Thus:
I=-1/2e^(-2x)+C=-1/(2e^(2x))+C
Applying the bounds:
J=int_0^ooe^(-2x)dx=[-1/(2e^(2x))]_0^oo
Evaluating and taking the limit at infinity:
J=[lim_(xrarroo)(-1/(2e^(2x)))]-(-1/(2e^0))
The limit goes to
J=0+1/2=1/2