How do you evaluate the integral int e^(-sqrtx)/sqrtx from 0 to oo?

1 Answer
Sep 22, 2016

2

Explanation:

start with the observation that d/dx (e^(f(x)) ) = f'(x) e^(f(x))

and so d/dx (e^( -sqrt x)) = - 1/(2 sqrt x) e^(- sqrt x)

So

int_0^oo e^(-sqrtx)/sqrtx dx

= -2 int_0^oo - e^(-sqrtx)/(2 sqrtx) dx

= -2 int_0^oo d/dx (e^( -sqrt x)) dx

= -2 [ e^( -sqrt x) ]_0^oo

= -2 (0 -1) = 2