How do you evaluate the integral int e^t/(e^t+1)dt?

1 Answer
May 6, 2017

int \ (e^t)/(e^t+1) \ dt = ln(e^t+1)+C

Explanation:

We want to find:

I = int \ (e^t)/(e^t+1) \ dt

We can perform a simple substitution; Let

u = e^t+1 => (du)/dt = e^t

If we perform the substitution then we get:

I=int color(red)(e^t)/u " " (du)/color(red)(e^t)
\ \ = int \ 1/u \ du
\ \ = ln|u| + C

And restoring the substitution we get:

I = ln(e^t+1)+C