How do you evaluate the integral int e^t/(e^t+1)dt?
1 Answer
int \ (e^t)/(e^t+1) \ dt = ln(e^t+1)+C
Explanation:
We want to find:
I = int \ (e^t)/(e^t+1) \ dt
We can perform a simple substitution; Let
u = e^t+1 => (du)/dt = e^t
If we perform the substitution then we get:
I=int color(red)(e^t)/u " " (du)/color(red)(e^t)
\ \ = int \ 1/u \ du
\ \ = ln|u| + C
And restoring the substitution we get:
I = ln(e^t+1)+C