How do you evaluate the integral int e^x/(1+e^(2x))dx from -oo to oo?

1 Answer
Aug 22, 2016

pi

Explanation:

Making y = e^x we have dy = e^x dx = y dx

int e^x/(1+e^(2x))dx equiv int dy/(1+y^2) = arctan(y)

but

lim_{x->oo}e^x=lim_{y->oo}=oo

so

lim_{a->oo} int_{-a}^a dy/(1+y^2) = pi/2-(-pi/2) = pi