How do you evaluate the integral int (ln(lnx))/x dx?
1 Answer
Mar 7, 2017
Explanation:
First let
intln(lnx)/xdx=intln(lnx)1/xdx=intln(t)dt
Now we can use integration by parts which takes the form
{(u=lnt" "=>" "du=1/tdt),(dv=dt" "=>" "v=t):}
Then:
=intln(t)dt=tlnt-intt1/tdt
=tlnt-intdt
=tlnt-t
=t(lnt-1)
=lnx(ln(lnx)-1)+C