How do you evaluate the integral int (ln(lnx))/x dx?

1 Answer
Mar 7, 2017

lnx(ln(lnx)-1)+C

Explanation:

First let t=lnx. This implies that dt=1/xdx. Then:

intln(lnx)/xdx=intln(lnx)1/xdx=intln(t)dt

Now we can use integration by parts which takes the form intudv=uv-intvdu. Let:

{(u=lnt" "=>" "du=1/tdt),(dv=dt" "=>" "v=t):}

Then:

=intln(t)dt=tlnt-intt1/tdt

=tlnt-intdt

=tlnt-t

=t(lnt-1)

=lnx(ln(lnx)-1)+C