How do you evaluate the integral int ln(x-1) from 1 to 2?
1 Answer
Please see the explanation section below.
Explanation:
Before attempting to evaluate this improper integral, let's change the variable of integration. (Let's do a substitution.)
Let
Our integral becomes
We need
int lnt dt = tlnt-t +C
Returning to the main question,
= lim_(ararr0^+) [t ln t -t]_a^1
= lim_(ararr0^+) [(0-1) - (a ln a -a)]
= -1 - lim_(ararr0^+) (a ln a-a)
= -1 - lim_(ararr0^+) (a ln a)
To evaluate
= lim_(ararr0^+) (ln a/(1/a)) has form(-oo)/oo so we try
= lim_(ararr0^+) ((1/a)/(-1/a^2)) = lim_(ararr0^+) (-a) = 0 .
So,
And finally,