How do you evaluate the integral int (lnx)^2dx?

1 Answer
Jan 7, 2017

The answer is =x(ln∣x∣)^2-2xln∣x∣+2x+C

Explanation:

We do integration by parts

intuv'dx=uv-intu'vdx

Here, int(lnx)^2dx

Let, u=(lnx)^2,=>, u'=(2lnx)/x

v'=1, =>, v=x

So,

int(lnx)^2dx=x(lnx)^2-intx*(2lnx)/xdx

=x(lnx)^2-2intlnxdx

We do the the integration by parts a second time

u=lnx, =>, u'=1/x

v'=1, =>, v=x

so,

intlnx=xlnx-intx*1/xdx

=xlnx-intdx=xlnx-x

Putting it alltogether

int(lnx)^2dx=x(lnx)^2-2(xlnx-x)+C

=x(ln∣x∣)^2-2xln∣x∣+2x+C