How do you evaluate the integral #int lnx/xdx#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Andrea S. Jan 11, 2017 #int lnx/x dx = 1/2(lnx)^2+C# Explanation: We have that: #d/(dx) (lnx) = 1/x# so: #int lnx/x dx = int lnx d(lnx) = 1/2(lnx)^2+C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 2281 views around the world You can reuse this answer Creative Commons License