How do you evaluate the integral int sec2xdx from 0 to pi/2?

1 Answer
Apr 26, 2017

int_0^(pi/2) sec2xdx=0

Explanation:

Let 2x=u then 2dx=du

Now intsec2xdx=1/2intsecudu

= 1/2int(secu(secu+tanu))/(secu+tanu)du

= 1/2int(sec^2u+secutanu)/(tanu+secu)du

As d/dx(tanu+secu)=sec^2x+secxtanx, the above is

= 1/2ln|secu+tanu|+c

= 1/2ln|sec2x+tan2x|+c

Hence, int_0^(pi/2) sec2xdx

= 1/2[ln|sec2x+tan2x|]_0^(pi/2)

= 1/2[ln|-1+0|-ln|1-0|]=0