How do you evaluate the integral #int x/(1-x)dx# from 0 to 2?
1 Answer
Aug 29, 2016
That integral does not converge.
Explanation:
# = lim_(brarr1^-) int_0^b (-1 +1/(1-x)) dx#
# = lim_(brarr1^-) (-x-ln abs(1-x))]_0^b#
# = lim_(brarr1^-) (-b-ln(1-b)) - (-0-ln1)#
But
So the integral diverges.