How do you evaluate the integral #int x/(1-x)dx# from 0 to 2?

1 Answer
Aug 29, 2016

That integral does not converge.

Explanation:

#x/(1-x)# is undefined at #x=1#, so the integral is improper. We have to break it into

#int_0^1 x/(1-x) dx + int_1^2 x/(1-x) dx# which converges if the two integrals converge.

#int_0^1 x/(1-x) dx = lim_(brarr1^-) int_0^b (x-1+1)/(1-x) dx#

# = lim_(brarr1^-) int_0^b (-1 +1/(1-x)) dx#

# = lim_(brarr1^-) (-x-ln abs(1-x))]_0^b#

# = lim_(brarr1^-) (-b-ln(1-b)) - (-0-ln1)#

But #lim_(brarr1^-)(-1-ln(1-b)) = oo#.

So the integral diverges.