How do you evaluate the integral int x^1000e^-x from 0 to oo?

2 Answers
Aug 28, 2016

= 1000!

Explanation:

int_0^oo x^1000e^-x dx

you can do this very quickly by noting that it is the equivalent of

mathcal (L) { x^1000}_(s = 1}

and as mathcal(L) {t ^n} = (n!)/(s^(n+1))

int_0^oo x^1000e^-x = (1000!)/(1)^1001 = 1000!

Or in terms of the gamma function:

Gamma(n+1) = int_0^oo x^(n) e^(-x) dx = n!

To generate your own solution you could start as per the factorial function with this

color(blue)(int_0^oo e^(- alpha x) dx)

= [- 1/ alpha e^(- alpha x)]_0^oo color(blue)(= 1/alpha)

d/(d alpha) int_0^oo e^(- alpha x) dx = d/(dalpha) (1/ alpha)

implies int_0^oo (-x) e^(- alpha x) dx = - 1/ alpha^2 or color(blue)( int_0^oo x e^(- alpha x) dx = 1/ alpha^2)

Again d/(d alpha) int_0^oo x e^(- alpha x) dx = d/(d alpha)( 1/ alpha^2)

implies int_0^oo (-x) x e^(- alpha x) dx = - 2/ alpha^3 or color(blue)(int_0^oo x^2 e^(- alpha x) dx = 2/ alpha^3)

Such that

int_0^oo x^n e^(- alpha x) dx = (n!)/ alpha^(n+1)

Aug 28, 2016

1000!

Explanation:

Supposing n in NN

d/(dx)(x^n e^(-x)) = nx^(n-1)e^(-x)-x^n e^(-x)

Calling I_n = int x^n e^(-x)dx we have

I_n-nI_(n-1)=-x^n e^(-x)

Here I_0 = int e^(-x)dx = -e^(-x)

so we have

e^xI_n - n e^xI_(n-1)=-x^n

Considering now J_n = e^xI_n

the recurrence equation reads

J_n-nJ_(n-1)=-x^n

developping

J_1 = J_0-x
J_2=2J_1-x^2
J_3=3J_2-x^3
cdots
J_n = nJ_(n-1)-x^n

or

J_2 = 2(J_0-x)-x^2
J_3=3(2(J_0-x)-x^2)-x^3
cdots
J_n = n!J_0-sum_(k=1)^n ((n!)/(k!))x^k

so

I_n = n!I_0-e^(-x)(sum_(k=1)^n ((n!)/(k!))x^k)

or

I_n = n!e^(-x)-e^(-x)(sum_(k=1)^n ((n!)/(k!))x^k)

Finally

int_0^oo x^n e^(-x)dx = n!

so

int_0^oo x^(1000) e^(-x)dx = 1000!