How do you evaluate the integral int x^2/(4+x^2)^2dxx2(4+x2)2dx?

1 Answer
Aug 12, 2017

intcolor(white)(l)(x^2)/((4+x^2)^2)color(white)(l)dx = color(blue)(1/4(tan^-1[x/2] - (2x)/(x^2+4)) + Clx2(4+x2)2ldx=14(tan1[x2]2xx2+4)+C

Explanation:

We're asked to find the integral

intcolor(white)(l)(x^2)/((x^2+4)^2)color(white)(l)dxlx2(x2+4)2ldx

Let's split this up into partial fractions:

= intcolor(white)(l)1/(x^2+4) - 4/((x^2+4)^2)color(white)(l)dx=l1x2+44(x2+4)2ldx

= intcolor(white)(l)1/(x^2+4)color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=l1x2+4ldx4l1(x2+4)2ldx

= intcolor(white)(l)1/(4((x^2)/4+1))color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=l14(x24+1)ldx4l1(x2+4)2ldx

= 1/4intcolor(white)(l)1/(4((x^2)/4+1))color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=14l14(x24+1)ldx4l1(x2+4)2ldx

For the integrand 1/((x^2)/4+1)1x24+1, let's make u = x/2u=x2 and dx = 2color(white)(l)dudx=2ldu:

= 1/2intcolor(white)(l)1/(u^2+1)color(white)(l)du - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=12l1u2+1ldu4l1(x2+4)2ldx

The integral of 1/(u^2+1)1u2+1 is tan^-1utan1u:

= 1/2tan^-1u - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=12tan1u4l1(x2+4)2ldx

For the integrand 1/((x^2+4)^2)1(x2+4)2, let's make x = 2tansx=2tans and dx = 2sec^2scolor(white)(l)dsdx=2sec2slds.

Then (x^2+4)^2 = (4tan^2s+4)^2 = 16sec^4s(x2+4)2=(4tan2s+4)2=16sec4s and s = tan^-1[x/2]s=tan1[x2]:

= 1/2tan^-1u - 8intcolor(white)(l)1/16cos^2scolor(white)(l)ds=12tan1u8l116cos2slds

= 1/2tan^-1u - 1/2intcolor(white)(l)cos^2scolor(white)(l)ds=12tan1u12lcos2slds

We can write cos^2scos2s as 1/2cos[2s] + 1/212cos[2s]+12:

= 1/2tan^-1u - 1/2intcolor(white)(l)1/2cos[2s] + 1/2color(white)(l)ds=12tan1u12l12cos[2s]+12lds

= 1/2tan^-1u - 1/4intcolor(white)(l)cos[2s]color(white)(l)ds - 1/4intcolor(white)(l)1color(white)(l)ds=12tan1u14lcos[2s]lds14l1lds

For the integrand cos[2s]cos[2s], let's make p = 2sp=2s and ds = 1/2dpds=12dp:

= 1/2tan^-1u - 1/8intcolor(white)(l)cospcolor(white)(l)dp - 1/4intcolor(white)(l)1color(white)(l)ds=12tan1u18lcospldp14l1lds

The integral of cospcosp is sinpsinp:

= 1/2tan^-1u - 1/8sinp - 1/4intcolor(white)(l)1color(white)(l)ds=12tan1u18sinp14l1lds

The integral of 11 is ss:

= 1/2tan^-1u - 1/8sinp - 1/4s + C=12tan1u18sinp14s+C

Substitute back in p = 2sp=2s:

= 1/2tan^-1u - 1/8sin[2s] - 1/4s + C=12tan1u18sin[2s]14s+C

Substitute back in s = tan^-1[x/2]s=tan1[x2]:

= ((x^2+4)(2tan^-1u - tan^-1[x/2]) - 2x)/(4(x^2+4)) + C=(x2+4)(2tan1utan1[x2])2x4(x2+4)+C

Substitute back in u = x/2u=x2:

= ((x^2+4)tan^-1[x/2] - 2x)/(4(x^2+4)) + C=(x2+4)tan1[x2]2x4(x2+4)+C

Or

color(blue)(ulbar(|stackrel(" ")(" "I = 1/4(tan^-1[x/2] - (2x)/(x^2+4)) + C" ")|)