How do you evaluate the integral int x^2/(4+x^2)^2dx∫x2(4+x2)2dx?
1 Answer
Explanation:
We're asked to find the integral
intcolor(white)(l)(x^2)/((x^2+4)^2)color(white)(l)dx∫lx2(x2+4)2ldx
Let's split this up into partial fractions:
= intcolor(white)(l)1/(x^2+4) - 4/((x^2+4)^2)color(white)(l)dx=∫l1x2+4−4(x2+4)2ldx
= intcolor(white)(l)1/(x^2+4)color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=∫l1x2+4ldx−4∫l1(x2+4)2ldx
= intcolor(white)(l)1/(4((x^2)/4+1))color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=∫l14(x24+1)ldx−4∫l1(x2+4)2ldx
= 1/4intcolor(white)(l)1/(4((x^2)/4+1))color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=14∫l14(x24+1)ldx−4∫l1(x2+4)2ldx
For the integrand
= 1/2intcolor(white)(l)1/(u^2+1)color(white)(l)du - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=12∫l1u2+1ldu−4∫l1(x2+4)2ldx
The integral of
= 1/2tan^-1u - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx=12tan−1u−4∫l1(x2+4)2ldx
For the integrand
Then
= 1/2tan^-1u - 8intcolor(white)(l)1/16cos^2scolor(white)(l)ds=12tan−1u−8∫l116cos2slds
= 1/2tan^-1u - 1/2intcolor(white)(l)cos^2scolor(white)(l)ds=12tan−1u−12∫lcos2slds
We can write
= 1/2tan^-1u - 1/2intcolor(white)(l)1/2cos[2s] + 1/2color(white)(l)ds=12tan−1u−12∫l12cos[2s]+12lds
= 1/2tan^-1u - 1/4intcolor(white)(l)cos[2s]color(white)(l)ds - 1/4intcolor(white)(l)1color(white)(l)ds=12tan−1u−14∫lcos[2s]lds−14∫l1lds
For the integrand
= 1/2tan^-1u - 1/8intcolor(white)(l)cospcolor(white)(l)dp - 1/4intcolor(white)(l)1color(white)(l)ds=12tan−1u−18∫lcospldp−14∫l1lds
The integral of
= 1/2tan^-1u - 1/8sinp - 1/4intcolor(white)(l)1color(white)(l)ds=12tan−1u−18sinp−14∫l1lds
The integral of
= 1/2tan^-1u - 1/8sinp - 1/4s + C=12tan−1u−18sinp−14s+C
Substitute back in
= 1/2tan^-1u - 1/8sin[2s] - 1/4s + C=12tan−1u−18sin[2s]−14s+C
Substitute back in
= ((x^2+4)(2tan^-1u - tan^-1[x/2]) - 2x)/(4(x^2+4)) + C=(x2+4)(2tan−1u−tan−1[x2])−2x4(x2+4)+C
Substitute back in
= ((x^2+4)tan^-1[x/2] - 2x)/(4(x^2+4)) + C=(x2+4)tan−1[x2]−2x4(x2+4)+C
Or
color(blue)(ulbar(|stackrel(" ")(" "I = 1/4(tan^-1[x/2] - (2x)/(x^2+4)) + C" ")|)