How do you evaluate the integral int x^2arctanx?

2 Answers
Jan 11, 2017

The answer is =x^3/3arctanx-color(blue)(1/6(-ln(1+x^2)+(1+x^2)))+C

Explanation:

sin^2x+cos^2x=1, =>, tan^2x+1=sec^2x

If y=arctanx

tany=x

(tany)'=x'

sec^2ydy/dx=1, =>, dy/dx=1/sec^2y=1/(1+x^2)
We use integration by parts

intuv'dx=uv-intu'vdx

u=arctanx, =>, u'=1/(1+x^2)

v'=x^2, =>, v=x^3/3

Therefore,

intx^2arctanxdx=x^3/3arctanx-color(blue)(1/3int(x^3dx)/(1+x^2))

Let, u=1+x^2, =>,du=2xdx#

x^2=u-1

so,

color(blue)(1/3int(x^3dx)/(1+x^2))=color(blue)(1/6*int(u-1)/udu)

=color(blue)(1/6(int-(du)/u+intdu))

=color(blue)(1/6(-lnu+u))

=color(blue)(1/6(-ln(1+x^2)+(1+x^2)))

Finally, we have

intx^2arctanxdx=x^3/3arctanx-color(blue)(1/6(-ln(1+x^2)+(1+x^2)))+C

Jan 11, 2017

x^3/3arc tanx-x^2/6+1/6ln(x^2+1)+C.

Explanation:

Let I=intx^2arc tanxdx

We will use the following Rule of Integration by Parts (IBP) :

IBP : intuvdx=uintvdx-int[(du)/dxintvdx]dx.

We take u=arc tanx :. (du)/dx=1/(x^2+1), and,

v=x^2 :. intvdx=x^3/3

Hence, I=x^3/3arc tanx-1/3intx^3/(x^2+1)dx=x^3/3arc tanx-1/3J,

where, J=intx^3/(x^2+1)dx=int(x^3+x-x)/(x^2+1)dx

=int{x(x^2+1)}/(x^2+1)dx-1/2int(2x)/(x^2+1)dx

=intxdx-1/2int{d/dx(x^2+1)}/(x^2+1)dx

:. J=x^2/2-1/2ln(x^2+1)

Altogether, I=x^3/3arc tanx-1/3{x^2/2-1/2ln(x^2+1)}, or,

I=x^3/3arc tanx-x^2/6+1/6ln(x^2+1)+C.

The Later Integral of J has been directly obtained using the

" Result : "int (f'(x))/f(x)dx=ln|f(x)|+c, which can easily be

proved by the substitution f(x)=t.

Enjoy Maths.!