How do you evaluate the integral int x^2e^xdxx2exdx from -oo to 0?

1 Answer
Sep 28, 2016

=2=2

Explanation:

you can IBP it

Indefinite Integral
int x^2 e^x dx = int x^2 d/dx(e^x) dx x2exdx=x2ddx(ex)dx

= int x^2 d/dx(e^x) dx =x2ddx(ex)dx

= x^2 e^x - int d/dx( x^2) e^x dx =x2exddx(x2)exdx

= x^2 e^x - int 2 x e^x dx =x2ex2xexdx

= x^2 e^x - int 2 x d/dx( e^x) dx =x2ex2xddx(ex)dx

= x^2 e^x - ( 2 x e^x - int d/dx(2 x) e^x dx )=x2ex(2xexddx(2x)exdx)

= x^2 e^x - ( 2 x e^x - 2int e^x dx )=x2ex(2xex2exdx)

= x^2 e^x - 2 x e^x + 2 e^x + C=x2ex2xex+2ex+C

= e^x (x^2 - 2 x + 2 ) + C=ex(x22x+2)+C

Definite Integral

= [ e^x (x^2 - 2 x + 2 ) ]_(-oo)^0=[ex(x22x+2)]0

= 2=2