We need
intx^ndx=x^(n+1)/(n+1)+C(n!=-1)
We perform a polynomial long division
color(white)(aaaa)x^4color(white)(aaaaaaaaa)∣x^2+1
color(white)(aaaa)x^4+x^2color(white)(aaaaa)∣x^2-1
color(white)(aaaaa)0-x^2
color(white)(aaaaaaa)-x^2-1
color(white)(aaaaaaaaa)0+1
Therefore,
x^4/(x^2+1)=(x^2-1)+1/(x^2+1)
So,
int(x^4dx)/(x^2+1)=int(x^2-1)dx+color(red)(intdx/(x^2+1))
=x^3/3-x+color(red)(intdx/(x^2+1))
The integral in red is done by trigonometric substitution
Let x=tantheta, =>, dx=sec^2theta d theta
and, x^2+1=tan^2theta+1=sec^2theta
Therefore,
color(red)(intdx/(x^2+1)=int(sec^2theta d theta)/sec^2theta=intd theta=theta=arctan(x))
Putting it all together
int(x^4dx)/(x^2+1)=x^3/3-x+arctan(x)+C