How do you evaluate the integral int x^4/(1+x^2)dx?

1 Answer
Jan 18, 2017

The answer is =x^3/3-x+arctan(x)+C

Explanation:

We need

intx^ndx=x^(n+1)/(n+1)+C(n!=-1)

We perform a polynomial long division

color(white)(aaaa)x^4color(white)(aaaaaaaaa)x^2+1

color(white)(aaaa)x^4+x^2color(white)(aaaaa)x^2-1

color(white)(aaaaa)0-x^2

color(white)(aaaaaaa)-x^2-1

color(white)(aaaaaaaaa)0+1

Therefore,

x^4/(x^2+1)=(x^2-1)+1/(x^2+1)

So,

int(x^4dx)/(x^2+1)=int(x^2-1)dx+color(red)(intdx/(x^2+1))

=x^3/3-x+color(red)(intdx/(x^2+1))

The integral in red is done by trigonometric substitution

Let x=tantheta, =>, dx=sec^2theta d theta

and, x^2+1=tan^2theta+1=sec^2theta

Therefore,

color(red)(intdx/(x^2+1)=int(sec^2theta d theta)/sec^2theta=intd theta=theta=arctan(x))

Putting it all together

int(x^4dx)/(x^2+1)=x^3/3-x+arctan(x)+C