How do you evaluate the integral int (x^5+3x^2+1)/(x^4-1)dxx5+3x2+1x41dx?

1 Answer
Jan 10, 2018

The answer is =x^2/2-3/4ln(|x+1|)+5/4ln(|x-1|)-1/4ln(x^2+1)+arctanx+C=x2234ln(|x+1|)+54ln(|x1|)14ln(x2+1)+arctanx+C

Explanation:

We need

intdx/(x^2+1)=arctan(x)dxx2+1=arctan(x)

As the degree of the numerator is greater than the degree of the denominator, perform a long division first.

(x^5+3x^2+1)/(x^4-1)=x+(3x^2+x+1)/(x^4-1)x5+3x2+1x41=x+3x2+x+1x41

Perform a decomposition into partial fractions

(3x^2+x+1)/(x^4-1)=(3x^2+x+1)/((x^2+1)(x+1)(x-1))3x2+x+1x41=3x2+x+1(x2+1)(x+1)(x1)

=(Ax+B)/(x^2+1)+C/(x+1)+D/(x-1)=Ax+Bx2+1+Cx+1+Dx1

=((Ax+B)(x+1)(x-1)+C(x^2+1)(x-1)+D(x^2+1)(x+1))/((x^2+1)(x+1)(x-1))=(Ax+B)(x+1)(x1)+C(x2+1)(x1)+D(x2+1)(x+1)(x2+1)(x+1)(x1)

The denominators are the same , compare the numerators

3x^2+x+1=(Ax+B)(x+1)(x-1)+C(x^2+1)(x-1)+D(x^2+1)(x+1)3x2+x+1=(Ax+B)(x+1)(x1)+C(x2+1)(x1)+D(x2+1)(x+1)

Let x=1x=1, =>, 5=4D5=4D, =>, D=5/4D=54

Let x=-1x=1, =>, 3=-4C3=4C, =>, C=-3/4C=34

Let x=0x=0, =>, 1=-B-C+D1=BC+D, =>, B=5/4+3/4-1=1B=54+341=1

Coefficients of x^3x3

0=A+C+D0=A+C+D, =>, A=-C-D=3/4-5/4=-1/2A=CD=3454=12

Therefore,

(x^5+3x^2+1)/(x^4-1)=x+(-1/2x+1)/(x^2+1)+(-3/4)/(x+1)+(5/4)/(x-1)x5+3x2+1x41=x+12x+1x2+1+34x+1+54x1

So,

int((x^5+3x^2+1)dx)/(x^4-1)=intxdx+int((-1/2x+1)dx)/(x^2+1)+int(-3/4dx)/(x+1)+int(5/4dx)/(x-1)(x5+3x2+1)dxx41=xdx+(12x+1)dxx2+1+34dxx+1+54dxx1

intxdx=x^2/2xdx=x22

int(-3/4dx)/(x+1)=-3/4ln(|x+1|)34dxx+1=34ln(|x+1|)

int(5/4dx)/(x-1)=5/4ln(|x-1|)54dxx1=54ln(|x1|)

int((-1/2x+1)dx)/(x^2+1)=-1/4int(2xdx)/(x^2+1)+intdx/(x^2+1)=-1/4ln(x^2+1)+arctanx(12x+1)dxx2+1=142xdxx2+1+dxx2+1=14ln(x2+1)+arctanx

Finally,

int((x^5+3x^2+1)dx)/(x^4-1)=x^2/2-3/4ln(|x+1|)+5/4ln(|x-1|)-1/4ln(x^2+1)+arctanx+C(x5+3x2+1)dxx41=x2234ln(|x+1|)+54ln(|x1|)14ln(x2+1)+arctanx+C