How do you evaluate the integral int x/(root3(x^2-1))?

1 Answer
Apr 13, 2017

The integral equals 3/4(x^2 - 1)^(2/3) + C

Explanation:

We will use u-substitution for this integral. Let u = x^2 - 1.

Then du = 2xdx and dx= (du)/(2x). Call the integral I.

I = int x/root(3)(u) * (du)/(2x)

I = 1/2 int 1/root(3)(u)

I = 1/2int u^(-1/3)

I = 1/2(3/2u^(2/3)) +C

I = 3/4u^(2/3) + C

I = 3/4(x^2 - 1)^(2/3) + C

Hopefully this helps!