How do you evaluate the integral xx25x+6 from 0 to 2?

1 Answer
Oct 13, 2016

The definite integral is undefined on the requested range since ln0 is undefined.

Explanation:

xx25x+6=x(x3)(x2)

xx25x+6=3(x2)2(x3)(x3)(x2)

xx25x+6=3x32x2

So:

20xx25x+6dx=203x32x2dx

20xx25x+6dx=[113ln|x3|2ln|x2|11]20

20xx25x+6dx=(3ln|23|2ln|22|)(3ln|03|2ln|02|)

20xx25x+6dx=(3ln12ln0)(3ln32ln2)

which is undefined, since ln0 is undefined.