How do you evaluate the integral ∫xx2−5x+6 from 0 to 2?
1 Answer
Oct 13, 2016
The definite integral is undefined on the requested range since
Explanation:
xx2−5x+6=x(x−3)(x−2)
xx2−5x+6=3(x−2)−2(x−3)(x−3)(x−2)
xx2−5x+6=3x−3−2x−2
So:
∫20xx2−5x+6dx=∫203x−3−2x−2dx
∫20xx2−5x+6dx=[113ln|x−3|−2ln|x−2|11]20
∫20xx2−5x+6dx=(3ln|2−3|−2ln|2−2|)−(3ln|0−3|−2ln|0−2|)
∫20xx2−5x+6dx=(3ln1−2ln0)−(3ln3−2ln2)
which is undefined, since