How do you evaluate the integral int (xdx)/(5x^2-2)?

2 Answers
Feb 5, 2018

1/10ln|(5x^2-2)|+C.

Explanation:

Prerequisite : int{(f'(x))/f(x)}dx=ln|f(x)|+c.

This can be proved using subst. for f(x).

Knowing taht, d/dx(5x^2-2)=10x, we have,

int(xdx)/(5x^2-2)=1/10int(10x)/(5x^2-2)dx,

=1/10ln|(5x^2-2)|+C.

Feb 5, 2018

intx/(5x^2-2)dx=1/10ln|(5x^2-2)|+c

Explanation:

we use the result

int(f'(x))/(f(x))dx=ln|f(x)|+c

intx/(5x^2-2)dx--(1)

now d/(dx)(5x^2-2)=10x

rewriting (1)

1/10int(10x)/(5x^2-2)dx

we have

intx/(5x^2-2)dx=1/10ln|(5x^2-2)|+c