How do you evaluate the integral int xe^(-x^2)dx from -oo to oo?

1 Answer
Sep 23, 2016

int_-∞^∞xe^(-x^2)=0

Explanation:

Let color(red)(u=e^(-x^2))

du=-2xe^(-x^2)dx

color(blue)(-(du)/2=xe^(-x^2)dx)

So
intxe^(-x^2)dx

intcolor(blue)(-(du)/2)

=-color(red)(u)/2+C where C is a constant

=-color(red)(e^(-x^2))/2+C

Therefore,

int_-∞^∞xe^(-x^2)=(-e^(-(-∞)^2)/2)-(-e^(-∞^2)/2)
int_-∞^∞xe^(-x^2)=(-e^(-∞)/2)-(-e^(-∞)/2)

Knowing that e^(-∞)=0

Then,

int_-∞^∞xe^(-x^2)=0-0=0