How do you evaluate the integral int1/(1+x^2)^2 dx from -oo to oo?
1 Answer
Explanation:
First, for simplicity's sake, examining without the bounds:
I=int1/(1+x^2)^2dx
Apply the trig substitution
I=intsec^2theta/(1+tan^2theta)^2d theta
Since
I=intsec^2theta/sec^4thetad theta=intcos^2thetad theta
This can be solved through the cosine double angle formula: since
I=1/2int(cos2theta+1)d theta=1/2intcos2thetad theta+1/2intd theta
The first integral can be solved either through another substitution or by inspection.
I=1/4sin2theta+1/2theta+C
Using the identity
I=1/2sinthetacostheta+1/2theta+C
Here, note that
I=1/(2+2tan^2theta)+1/2theta+C
Using
I=1/(2+2x^2)+1/2arctanx+C
Reapplying the bounds:
J=int_(-oo)^oo1/(1+x^2)^2dx=[1/(2+2x^2)+1/2arctanx]_(-oo)^oo
Taking the limits at both infinities:
J=(lim_(xrarroo)1/(2+2x^2)+1/2lim_(xrarroo)arctanx)-(lim_(xrarr-oo)1/(2+2x^2)+1/2lim_(xrarr-oo)arctanx)
J=(0+1/2(pi/2))-(0+1/2(-pi/2))
J=pi/4+pi/4=pi/2