How do you evaluate the integral int1/(1+x^2)^2 dx from -oo to oo?

1 Answer
Oct 21, 2016

int_(-oo)^oo1/(1+x^2)^2dx=pi/2

Explanation:

First, for simplicity's sake, examining without the bounds:

I=int1/(1+x^2)^2dx

Apply the trig substitution x=tantheta. This implies that dx=sec^2thetad theta. Thus:

I=intsec^2theta/(1+tan^2theta)^2d theta

Since 1+tan^2theta=sec^2theta:

I=intsec^2theta/sec^4thetad theta=intcos^2thetad theta

This can be solved through the cosine double angle formula: since cos2theta=2cos^2theta-1, we see that cos^2theta=1/2(cos2theta+1).

I=1/2int(cos2theta+1)d theta=1/2intcos2thetad theta+1/2intd theta

The first integral can be solved either through another substitution or by inspection.

I=1/4sin2theta+1/2theta+C

Using the identity sin2theta=2sinthetacostheta:

I=1/2sinthetacostheta+1/2theta+C

Here, note that sinthetacostheta=tantheta/sec^2theta=tantheta/(1+tan^2theta). Thus:

I=1/(2+2tan^2theta)+1/2theta+C

Using x=tantheta we see that:

I=1/(2+2x^2)+1/2arctanx+C

Reapplying the bounds:

J=int_(-oo)^oo1/(1+x^2)^2dx=[1/(2+2x^2)+1/2arctanx]_(-oo)^oo

Taking the limits at both infinities:

J=(lim_(xrarroo)1/(2+2x^2)+1/2lim_(xrarroo)arctanx)-(lim_(xrarr-oo)1/(2+2x^2)+1/2lim_(xrarr-oo)arctanx)

J=(0+1/2(pi/2))-(0+1/2(-pi/2))

J=pi/4+pi/4=pi/2