How do you evaluate the integral int10^(-x) dx?

1 Answer
Sep 22, 2014

int 10^{-x}dx=-10^{-x}/ln10+C

By rewriting to base e,

int10^{-x}dx=int e^{-(ln10)x}dx

by the substitution u=-(ln10)x Rightarrow dx={du}/{-ln10},

=-1/{ln10}int e^u du

by exponential rule,

=-1/{ln10}e^u+C

by putting u=-(ln10)x back in,

=-1/{ln10}e^{-(ln10)x}+C

by rewriting back to base 10,

=-10^{-x}/ln10+C