How do you evaluate the integral inte^(4x) dx∫e4xdx?
1 Answer
Aug 13, 2014
We will use
Thus,
Also, we will use the constant law of integration, namely
int e^(4x)dx = 1/4 int 4*e^(4x)dx∫e4xdx=14∫4⋅e4xdx
Now, we will rewrite in terms of
int e^(4x)dx = 1/4 int e^(u)du∫e4xdx=14∫eudu
We know that the integral of
int e^(4x)dx = 1/4 e^(u) + C∫e4xdx=14eu+C
Substituting back
int e^(4x)dx = 1/4 e^(4x) + C∫e4xdx=14e4x+C