How do you evaluate the integral intx^nlnxdx?

1 Answer
May 6, 2017

For n=-1: (lnx)^2/2+C

For n!=-1: (x^(n+1)((n+1)lnx-1))/(n+1)^2+C

Explanation:

I=intx^nlnxdx

Use integration by parts. Let:

{(u=lnx,=>,du=1/xdx),(dv=x^ndx,=>,v=x^(n+1)/(n+1)):}" "" "" "(n!=-1)

Then:

I=lnx(x^(n+1)/(n+1))-intx^(n+1)/(n+1)(1/x)dx

color(white)I=x^(n+1)/(n+1)lnx-1/(n+1)intx^ndx

color(white)I=x^(n+1)/(n+1)lnx-1/(n+1)(x^(n+1)/(n+1))

color(white)I=(x^(n+1)((n+1)lnx-1))/(n+1)^2+C

In the case where n=-1, the integral is intlnx/xdx. With the substitution t=lnx this becomes inttdt=t^2/2=(lnx)^2/2+C.