How do you evaluate the integral of int (1 + cos 4x)^(3/2) dx(1+cos4x)32dx?

1 Answer
Mar 28, 2018

int(1+cos4x)^(3/2)dx=sqrt2/8(3sin2x+sin6x)+"c"(1+cos4x)32dx=28(3sin2x+sin6x)+c

Explanation:

int(1+cos4x)^(3/2)dx=int(1+2cos^2 2x-1)^(3/2)dx=int2sqrt2cos^3 2xdx=sqrt2/2int(2cos^2x-1)^3dx(1+cos4x)32dx=(1+2cos22x1)32dx=22cos32xdx=22(2cos2x1)3dx

After a very long expansion, we get it into the following form

(sqrt2)/2int3cos2x+cos6xdx=sqrt2/2(1/2sin2x+1/6sin6x)+"c"223cos2x+cos6xdx=22(12sin2x+16sin6x)+c
=sqrt2/8(3sin2x+sin6x)+"c"=28(3sin2x+sin6x)+c