How do you evaluate the integral of int (2 -1/x)dx(21x)dx from 1/2 to 3?

1 Answer
May 11, 2018

int_(1/2)^3 (2-1/x)dx =5 - ln6312(21x)dx=5ln6

Explanation:

Using the linearity of the integral:

int_(1/2)^3 (2-1/x)dx = 2int_(1/2)^3dx - int_(1/2)^3 dx/x312(21x)dx=2312dx312dxx

int_(1/2)^3 (2-1/x)dx = 2(3-1/2) - (ln3-ln(1/2))312(21x)dx=2(312)(ln3ln(12))

int_(1/2)^3 (2-1/x)dx =5 - ln6312(21x)dx=5ln6