How do you evaluate the integral of int (2 -1/x)dx∫(2−1x)dx from 1/2 to 3? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Andrea S. May 11, 2018 int_(1/2)^3 (2-1/x)dx =5 - ln6∫312(2−1x)dx=5−ln6 Explanation: Using the linearity of the integral: int_(1/2)^3 (2-1/x)dx = 2int_(1/2)^3dx - int_(1/2)^3 dx/x∫312(2−1x)dx=2∫312dx−∫312dxx int_(1/2)^3 (2-1/x)dx = 2(3-1/2) - (ln3-ln(1/2))∫312(2−1x)dx=2(3−12)−(ln3−ln(12)) int_(1/2)^3 (2-1/x)dx =5 - ln6∫312(2−1x)dx=5−ln6 Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of ln(7x)ln(7x)? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of x^2-6x+5x2−6x+5 from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral 1/(sqrt(49-x^2))1√49−x2 from 0 to 7sqrt(3/2)7√32? How do you integrate f(x)=intsin(e^t)dtf(x)=∫sin(et)dt between 4 to x^2x2? How do you determine the indefinite integrals? How do you integrate x^2sqrt(x^(4)+5)x2√x4+5? See all questions in Definite and indefinite integrals Impact of this question 2595 views around the world You can reuse this answer Creative Commons License