How do you evaluate the integral of int (2^tanθ)sec^2(θ) dθ?

1 Answer
Feb 21, 2016

int 2^{tan theta} * sec^2 theta "d"theta = 2^{tan theta}/ln2 + "Integration Constant"

Explanation:

Note that the

frac{"d"}{"d"theta}(tan theta) = sec^2 theta

The integrand looks to be a result of the chain rule so let's work backwards.

The derivative of an exponential function is retains the exponential. So we begin by finding the derivative of 2^{tan theta}.

frac{"d"}{"d"theta}(2^{tan theta}) = frac{"d"}{"d"theta}(e^{ln2 * tan theta})

= e^(ln2 * tan theta) * "d"/("d"theta)(ln2 * tan theta)

= e^(ln2 * tan theta) * ln2 * sec^2 theta

= 2^{tan theta} * ln2 * sec^2 theta

Therefore,

int 2^{tan theta} * ln2 * sec^2 theta "d"theta = 2^{tan theta} + "Constant"

Divide both sides by ln2 to get our final answer.

int 2^{tan theta} * sec^2 theta "d"theta = 2^{tan theta}/ln2 + "Another Constant"