How do you evaluate the integral of int (2-x)/(1- x^2)?

1 Answer
Jan 2, 2016

-1/2 ln|1-x| + 3/2 ln|1+x| +C or

1/2 (3 ln|1+x| -ln|1-x|)+ C

Explanation:

Use partial fraction decomposition to rewrite the integrant before evaluate the integral

int(2-x)/(1-x^2) dx = int(2-x)/((1-x)(1+x)) dx

As partial fraction
A/(1-x) +B/(1+x) = (2-x)/((1-x)(1+x))

A(1+x) + B(1-x) = 2-x

x: " " " A -B = -1
x^0 " " "A + B = 2

When you solve the system

A= 1/2 ; " " " B= 3/2

Rewrite the integral as

int1/(2(1-x)) dx + int 3/(2(1+x)) dx

-1/2 ln|1-x| + 3/2 ln|1+x| +C or

1/2 (3 ln|1+x| -ln|1-x|)+ C