How do you evaluate the integral of int absx dx|x|dx from -2 to 1?

2 Answers
Dec 15, 2015

Split the interval into two.

Explanation:

int_-2^1 absx dx = int_-2^0 absx dx + int_0^1 absx dx12|x|dx=02|x|dx+10|x|dx

For x<0x<0, absx=-x|x|=x.
For x>=0x0, absx=x|x|=x.

int_-2^0 absx dx + int_0^1 absx dx = int_-2^0 -x dx + int_0^1 x dx02|x|dx+10|x|dx=02xdx+10xdx

= [-x^2/2]_-2^0 + [x^2/2]_0^1=[x22]02+[x22]10

= 2 + 1/2 =2+12

= 5/2=52

Dec 15, 2015

int_(-2)^1|x|dx = 5/212|x|dx=52

Explanation:

The absolute value function |*||| can be written as the piecewise function
|x| = {(-x" if "x<=0), (x" if "x>=0):}

Thus, using the property that for a < b < c
int_a^cf(x)dx = int_a^bf(x)dx + int_b^cf(x)dx

we obtain

int_(-2)^1|x|dx = int_-2^0|x|dx + int_0^1|x|dx

= int_-2^0(-x)dx + int_0^1xdx

=-int_-2^0xdx + int_0^1xdx

= -[x^2/2]_-2^0 + [x^2/2]_0^1

=-(0^2/2 - (-2)^2/2) + (1^2/2 - 0^2/2)

= -(-2)+1/2

=5/2

Thus int_(-2)^1|x|dx = 5/2