How do you evaluate the integral of int dx/(1+x^2)dx1+x2 from -1 to 1?

1 Answer
Aug 1, 2016

pi/2π2.

Explanation:

Let I=int_-1^1 dx/(1+x^2)I=11dx1+x2.

Then, I=[arctanx]_-1^1I=[arctanx]11

=arctan1-arctan(-1)=arctan1arctan(1)

=pi/4-(-pi/4)=π4(π4)

:. I=pi/2.

In an another way, we observe that the function f(x)=1/(1+x^2),

is an even function, so, by,

The Rule : int_-a^af(x)dx=2int_0^af(x)dx, if f is even.

:. I=2int_0^1dx/(1+x^2)=2[arctanx]_0^1=2[pi/4-0]=pi/2.