How do you evaluate the integral of int e^-x/(1+e^-2x) dx?

1 Answer

int (e^(-x)dx)/(1+e^(-2x))=-arctan e^(-x)+C

int (e^(-x)dx)/(1+e^(-2x))=-tan^(-1) e^(-x)+C

Explanation:

int e^(-x)/(1+e^(-2x))dx

int e^(-x)/(1^2+(e^(-x))^2)dx

-int (e^(-x)(-1)*dx)/(1^2+(e^(-x))^2)

We can now use the formula

int (du)/(u^2+a^2)=1/a*arctan (u/a)+C

int e^(-x)/(1+e^(-2x))dx=-int (e^(-x)(-1)*dx)/(1^2+(e^(-x))^2)

=(-1/1)*arctan(e^(-x)/1)+C

=-arctan e^(-x)+C

=-tan^(-1) e^(-x)+C

God bless....I hope the explanation is useful.