How do you evaluate the integral of int tan(x)ln(cosx) dx?

1 Answer
May 3, 2016

-ln^2(cosx)/2+C

Explanation:

We can solve this integral using u-substitution, but it is fairly unapparent from the outset.

If we let u=ln(cosx), differentiating this reveals that

du=(d/dx(cosx))/cosxdx=(-sinx)/cosxdx=-tanxdx

Multiply the interior and exterior of the integral by -1.

inttanxln(cosx)dx=-int-tanxln(cosx)dx=-intudu

Integrating this gives -u^2/2+C, and since u=ln(cosx), this becomes -ln^2(cosx)/2+C.