How do you evaluate the integral of intln(x^2 - 1)dxln(x21)dx?

1 Answer
Feb 18, 2016

Use integration by parts and integration by partial fractions to find that the integral evaluates to

xln(x^2-1)-2x-ln|x-1|+ln|x+1|+Cxln(x21)2xln|x1|+ln|x+1|+C

Explanation:

We will proceed using integration by parts and partial fraction decomposition .

We start by using integration by parts.

Let u = ln(x^2-1)u=ln(x21) and dv = dxdv=dx

Then du = (2x)/(x^2-1)dxdu=2xx21dx and v = xv=x

By the integration by parts formula intudv = uv - intvduudv=uvvdu

intln(x^2-1)dx = xln(x^2-1) - int(2x^2)/(x^2-1)dxln(x21)dx=xln(x21)2x2x21dx

=xln(x^2-1)-2int(1+1/(x^2-1))dx=xln(x21)2(1+1x21)dx

=xln(x^2-1)-2int1dx -2int1/(x^2-1)dx=xln(x21)21dx21x21dx

=xln(x^2-1)-2x-2int1/((x+1)(x-1))dx=xln(x21)2x21(x+1)(x1)dx

To evaluate the remaining integral, we can use partial fractions.

1/((x+1)(x-1))=A/(x+1)+B/(x-1)1(x+1)(x1)=Ax+1+Bx1

=> 1 = A(x-1) + B(x+1)1=A(x1)+B(x+1)

=(A+B)x + (-A+B)=(A+B)x+(A+B)

=>{(A+B=0), (-A+B=1):}

=>{(A = -1/2),(B=1/2):}

=>int(1/((x+1)(x-1))dx = int((1/2)/(x-1)-(1/2)/(x+1))dx

=1/2(int1/(x-1)dx-int1/(x+1)dx)

=1/2(ln|x-1|-ln|x+1|)+C

Substituting this back into the prior result, we have

intln(x^2-1)dx =
= xln(x^2-1)-2x-ln|x-1|+ln|x+1|+C