How do you expand (2x+2y)^4(2x+2y)4? Precalculus The Binomial Theorem Pascal's Triangle and Binomial Expansion 1 Answer Gerardina C. Aug 30, 2016 16x^4+64x^3y+96x^2y^2+64xy^3+16y^416x4+64x3y+96x2y2+64xy3+16y4 Explanation: Since (a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4(a+b)4=a4+4a3b+6a2b2+4ab3+b4, then (2x+2y)^4=(2x)^4+4(2x)^3(2y)+6(2x)^2(2y)^2+4(2x)(2y)^3+(2y)^4(2x+2y)4=(2x)4+4(2x)3(2y)+6(2x)2(2y)2+4(2x)(2y)3+(2y)4 that is 16x^4+64x^3y+96x^2y^2+64xy^3+16y^416x4+64x3y+96x2y2+64xy3+16y4 Answer link Related questions What is Pascal's triangle? How do I find the nnth row of Pascal's triangle? How does Pascal's triangle relate to binomial expansion? How do I find a coefficient using Pascal's triangle? How do I use Pascal's triangle to expand (2x + y)^4(2x+y)4? How do I use Pascal's triangle to expand (3a + b)^4(3a+b)4? How do I use Pascal's triangle to expand (x + 2)^5(x+2)5? How do I use Pascal's triangle to expand (x - 1)^5(x−1)5? How do I use Pascal's triangle to expand a binomial? How do I use Pascal's triangle to expand the binomial (a-b)^6(a−b)6? See all questions in Pascal's Triangle and Binomial Expansion Impact of this question 4240 views around the world You can reuse this answer Creative Commons License