How do you expand (2x+3y)^4?

1 Answer
Aug 28, 2017

16x^4+96x^3y+216x^2y^2+216xy^3+81y^4

Explanation:

"using the "color(blue)"Binomial theorem"

•color(white)(x)(a+b)^n=sum_(r=0)^n((n),(r))a^(n-r)b^r

"where "((n),(r))=(n!)/(r!(n-r)!)

"we can also generate the binomial coefficients using"
"the appropriate row of "color(blue)"Pascal's triangle"

"for "n=4to1color(white)(x)4color(white)(x)6color(white)(x)4color(white)(x)1

"here "a=2x" and "b=3y

rArr(2x+3y)^4

=1.(2x)^4(3y)^0+4.(2x)^3(3y)^1+6.(2x)^2(3y)^2+4.(2x)^1(3y)^3+1.(2x)^0(3y)^4

=16x^4+96x^3y+216x^2y^2+216xy^3+81y^4