How do you expand (2y^3+x)^5?

1 Answer
Sep 8, 2016

x^5 +10y^3x^(4) + 40y^6x^(3)+ 80y^9x^(2)+80y^12x+32y^15

Explanation:

Use the Binomial Theorem. First lets make a quick substitution

(z+x)^5, where z=2y^3 now expand using the formula

(y+x)^n =sum_(k=0)^n ("_k^n) y^kx^(n-k)

x^5 +5zx^(4) + 10z^2x^(3)+ 10z^3x^(2)+5z^4x+z^5

now we can substitute back the z

x^5 +5(2y^3)x^(4) + 10(2y^3)^2x^(3)+ 10(2y^3)^3x^(2)+5(2y^3)^4x+(2y^3)^5

simplify

x^5 +10y^3x^(4) + 40y^6x^(3)+ 80y^9x^(2)+80y^12x+32y^15