How do you expand (3v^4+1)^3(3v4+1)3?

1 Answer
Jul 11, 2016

(3v^4+1)^3=27v^12+27v^8+9x^4+1(3v4+1)3=27v12+27v8+9x4+1

Explanation:

From the binomial theorem, we have the general formula:

(a+b)^n = sum_(k=0)^n ((n),(k))a^(n-k)b^k

where ((n),(k)) = (n!)/(k!(n-k)!)

These coefficients occur as rows in Pascal's triangle:

enter image source here

For n=3, we pick the row 1, 3, 3, 1 to find:

(a+b)^3 = ((3),(0))a^3+((3),(1))a^2b+((3),(2))ab^2+((3),(3))b^3

color(white)(XXXX)=a^3+3a^2b+3ab^2+b^3

color(white)()
For our example, a=3v^4 and b=1, so we find:

(3v^4+1)^3=(3v^4)^3+3(3v^4)^2+3(3v^4)+1

color(white)(XX)=3^3v^12+3*3^2v^8+3*3x^4+1

color(white)(XX)=27v^12+27v^8+9x^4+1